Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?
نویسندگان
چکیده
Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum-N. cattleianum, and P. myrtoides-N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities.
منابع مشابه
Morphological and Anatomical Studies of the Ovary Galls of Sesamum indicum l. Induced by the Gall Midge, Asphondylia sesami Felt
The organization of gall on the ovary ofSesamum indicum L induced by the gall midge, Asphondylia sesami Felt, not only affects biochemical equilibrium of the host but also causes disturbed vegetative growth and reduced seed-setting. The toxicity created by the gall maker induces the re-orientation of vasculature Cecidogenetic stimuli lead to excessive hypertrophy and hyperplasy forming the gall...
متن کاملGradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects
Plant cells respond to abiotic and biotic stimuli, which generate adaptive phenotypes in plant organs. In the case of plant galls, cell phenotypes are adaptive for the gall inducer and assume characteristics mainly linked to its protection and nutrition. Herein, the cytological development and histochemical profile of Nothotrioza cattleiani galls, a sucking insect, on the leaves of Psidium catt...
متن کاملGenotype-phenotype association of TGF-β1 and GST with chemo-radiotherapy induced toxicity
Background: Normal tissue toxicity continues to remain as a major challenge for radiation oncologists for delivering the total dose to the tumour cells in cancer patients. Cellular, molecular and plasma based early biomarkers to predict the overreactions and non-overreactions of normal tissue toxicity before the initiation of radiotherapy can be valuable for personalised treatment. The aim of t...
متن کاملCystic fibrosis from genotype to phenotype: review article
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease, which is caused by defection in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR gene codes chloride channels to modulate the homeostasis of epithelial environments. Defective CFTR affects various organs such as the lungs, pancreas, intestine, liver and skin; however, lung impairment is the mai...
متن کاملInfluence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
Gall inducing insects most frequently oviposit in young tissues because these tissues have higher metabolism and potential for differentiation. However, these insects may also successfully establish in mature tissues as was observed in the super-host Copaifera langsdorffii. Among C. langsdorffii gall morphotypes, one of the most common is a midrib gall induced by an undescribed species of Cecid...
متن کامل